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Models 

It is proposed that the type of model first suggested by Kac in connection with 
problems of nonequilibrium statistical mechanics can be generalized and 
modified so that it can be directly applied to cellular automata. It is further 
noted that these same models can be used to illuminate some basic questions in 
the interpretation of quantum mechanics. 
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1. PROLOGUE 

In his remarkable autobiographical notes, Mark Kac quotes a statement 
by Uhlenbeck that "In Physics one must follow a Master. ' '~ As Kac later 
wrote, it was Uhlenbeck who introduced him to the problems of statistical 
physics. (2) Indeed, Kac's major contributions to statistical physics were 
direct outgrowths of suggestions first made by Uhlenbeck. Kac's brilliant 
solution of the Ehrenfest model was in direct response to Uhlenbeck's 
urging; his major contributions to the Ising model followed brief but 
inspired tutoring by Uhlenbeck on that topic. 

There is a third area, less well known, certainly less intensely 
elaborated, where Uhlenbeck's urging again inspired Kac to interesting and 
potentially important ideas. Uhlenbeck, as a student of Ehrenfest, was 
deeply interested in the question of the approach to thermal equilibrium of 
statistical systems. The role and fundamental significance of the Boltzmann 
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equation--its status within physics--were of paramount concern 
throughout his life. In Uhlenbeck's investigations, he (although not very 
explicitly) introduced the category of Master equations as distinguished 
from Liouville equations. In the Master equation approach the dynamics is 
described stochastically, for example, by prescribing fundamental transition 
probabilities. In the Louville description, the dynamics is described 
precisely, totally deterministically, while the needed macroscopic quantities 
are obtained from subsequent statistical averages. 

Kac became interested in the precise relation between the Master and 
Liouville equations. (Uhlenbeck tended to stress the solutions of the 
Master-type equations such as the Boltzmann equation and the Kramers 
equation.) In order to investigate that relation, Kac invented a very 
ingenious model, the Kac ring model, (3) in which both the exact dynamical 
treatment with a subsequent averaging and the statistical treatment could 
be carried out rigorously, making a direct comparison between exact 
solutions possible. Kac wrote only one paper on this model. (31 He was very 
pleased that his example showed that the two approaches (Master and 
Liouville approach) were not completely equivalent, but he never returned 
the the model or to the general connection. 

Later, extensions and elaborations of this model were studied by many 
people. (4-6) Apart from pointing out a number of interesting and unexpec- 
ted features of the Kac model, they conformed that in general the two 
statistical treatments, the Liouville and Master treatments, were not 
equivalent. Although perhaps not generally known in this degree of detail 
or in this particular context, the overall drift of these results did not come 
as a great surprise. These special results verified that for these contrived 
models, with a "poverty-stricken" dynamics, a typical Master's level 
(Boltmann level) treatment did not contain all the dynamical information. 
Their relevance for realistic systems, or for the foundations of statistical 
mechanics, seemed rather minor. Apart from emphasizing that in general 
the approach to a unique equilibrium is not inevitable and certainly not 
universal, the study of models had little impact. 

The practitioners of statistical mechanics were well aware when and 
where a Master equation description that would lead to the usual 
equilibrium state was legitimate and effective. It is the purpose of this note 
to suggest that the Kac models, or modifications inspired by these models, 
might be helpful and illuminating in several other areas. There is currently 
a great deal of interest in the temporal evolution of cellular automata. Sec- 
tion 4 will indicate briefly just how the techniques developed from the Kac 
ring models are well adapted for an analytic (as contrasted to a com- 
putational) treatment of cellular automata. Another distinct area in which 
Kac models can play an important role is in the construction of what 
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might be called "minimal quantum theories." It is well known that in spite 
of the phenomenal success of quantum theory, there are a number of 
physicists and plilosophers who seek alternate, pseudoclassical causal 
theories that would nevertheless reproduce the main features of quantum 
theory. There exists a quantum version of the Kac ring model, (5) which 
contains just the additivity of probability amplitudes. Section 5 contains 
some results and conjectures about he possibility (or impossibility!) of con- 
structing classical hidden variables for such systems. 

These are the only "new perspectives of Kac models" touched upon in 
this paper. But it is worth pointing out that the precise relation between 
continuous and discrete descriptions of lattice gauge theories and the con- 
nection between continuous and discrete chaos all have substantial formal 
and conceptual overlap with the simple Kac ring models. Thus, Mark 
Kac's simple example "constructed in part to irritate those who think non 
equilibrium statistical mechanics is finished ''(s) has a surprising number of 
unexpected potentialities for interesting physics. 

2. B A C K G R O U N D .  THE F O R M A L  STRUCTURE OF 
KAC M O D E L S  

a. The original Kac model and its variations are described in detail 
in Refs. 4 and 5. Here just the notation and some basic equations will be 
recalled. The model schematically describes impurity scattering where the 
scattering objects (particles or balls) are capable of just two states. The 
underlying geometry is a one-dimensional chain whose lattice points are 
indicated by j = 1 ..... n. During each time interval, all particles placed on all 
the lattice points move along the chain. The scattering centers are at fixed 
locations; a complete characterization is provided by a set of ej variables 
j = I,..., n, where e = + 1 if there is no scattering center at j and ej = - 1  if 
there is a scattering center at j. 

In the simplest Kac models, the scattered objects are capable of just 
two states (spin up and spin down, or white and blue). Each particle is 
described by a variable qj(t)= +1 or - 1 ,  which gives the state of the 
object at location j at time t. The system at time t is described by the set 
{t/j(t)}. Because of the motion of the objects and the action of the scatter- 
ing centers, the set {t/j(t)} changes in the course of time. Just what that 
change is depends on the nature of the assumed scattering dynamics. In the 
original Kac model it was assumed that when an object leaves a scattering 
center (it has been scattered) its state is required to change. This leads to 
the equation of motion 

~ j + , ( t +  l) = ~?7~(t) (1) 
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Since the impurity distribution is fixed, the ej variables are indepen- 
dent of the time and unaffected by the dynamics. 

This level of description is the Newtonian level; Eq. (1) can be trivially 
solved; all results will of course depend on the set {e}. Statistical ideas 
enter, because typically and in practice the set {e} is not given as such. All 
that is usually known is average or probability information. In almost all 
Kac models the probability distribution of the scattering centers is given by 

Prob(e) = �89 + �89 - 2#)~ (2) 

This is an uncorrelated probability distribution 

P(e]ek) = (Prob ej)(Prob e~) (3) 

The Liouville level description is obtained by studying the temporal 
evolution of an observable Q; this will depend explicitly on e~,..., e,. The 
macroscopic or observed value is given by 

Qobs(t) = ~ ' " Z  Pr~ ..... e,) Q(e: ..... ~,, t) (4) 
~1 ~n 

In general the solution of the Liouville equation is needed to obtain 
Q(el,..., ~,,, t). 

The equations for the one- and two-particle (Liouville distribution 
functions are 

f:l)(~, t )=  f}l_)l(e:_ l~, t -  1) (5a) 

f:~)(~, fi, t) = fJ:) l ,k-1(~:- ,  ~, ek_l fl, t - 1) (5b) 

fj(.l)(~, t) is the probability that the object at site j at time t is in the state ~. 
As anticipated, f(1) and f(2) do depend on {e }. The pattern outlined here is 
the characteristic exact, rigorous procedure. 

The Master or Boltzmann description (adapted to the specific 
impurity distribution) starts from probability distributions 
FJl)(~, t), FJ~)(~,/~, t), which incorporate (2) and (3) from the start: 

F ~ l ) ( a , t ) = ( 1 - # ) ~ ' ) ~ ( ~ , t - 1 ) + # [ 1 - F ~ _ ) , ( a , t - 1 ) ]  (6) 

# functions via (2) as the average density of the scatterers. No further 
averaging is needed. The main results of the classical analysis are that: 

I. In general FJ:)(~, t )=  (fJl)(~, t))~. 

II. In general F)~)(~, fl, t) :r (fJ~)(~, fl, t) )~. 

III. The limit t ~ ov of f}~)(~, fl, t) is not always 1/4; the limit t ~ 
of FJ~ ) is 1/4, as an elementary analysis would yield. 

( f ) ~  is the ensemble average o f f  
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b. An extension of the original Kac model retains the same basic 
ideas, but introduces a classical probability 2 that when scattered an object 
will change its state with probability 2. The same two methods of treatment 
can again be carried out. The equation for f ( ' )  becomes instead of (5) 

f ) (~ ,  t )  = --)~ej_,fj_l(O~,t--l)+�89 ) (7) 

As should be anticipated, the equation again depends explicitly on e. The 
Boltzman type function F} l) satisfies instead of (6) 

Fj(~, t)=Fa ,(~, t - i ) ( I - I~ )+Fj_ , (~ ,  t - i ) / ~ ( I - ~ )  

+ [1 - Fj_ x(e, t -  1)3 #2 (7a) 

The analysis now shows (5) that 

I. FJ'~(~, t)= <f~')(a, t)>~. 

II. F~)(e, fl, t) # <f}~)(a, fl, t) )~. 
III. l im,~ ~ Fj(~)=limt~ ~ \Jik/r(2)\/~ =1/4. 

This type of model is of a somewhat mixed, hybrid character. It contains 
stochastic elements explicitly through the probability aspects of the 
scattering mechanism (the parameter ~), but it also contains deterministic 
dynamical aspects, through the e variables. The distinct statistical treat- 
ments, the Liouville and Master methods, refer to the different treatments 
of the e variables. In the Liouville method the e dependence of the 
dynamics is retained throughout, treated exactly, with only a final averag- 
ing of the observables. In the Master method the dynamics itself is based 
on the average or probability character of the e variables. The important 
observation is that the results are not the same. 

c. It was shown in Ref. 5 that it is possible to construct a "quantum" 
extension of these models. The crucial feature is to describe the state of the 
objects by a two-component probability amplitude <qj(t)t. The time 
evolution of the system [the analogue of Eq. (1)] is given by the action of 
an operator E, which acts in the two-dimensional color subspace: 

l~/j+,(t + I)> =Ej l~tj(t) > (8) 

The choice of E is determined by the model rules. If the rules are chosen to 
be the same as those described in the classical stochastic model in Sec- 
tion 2b, Ej is given by 

Ej = �89 + 8j)l + �89 - 8j)Sj (9a) 

( ( 1  - 2) '/2 2 '/2 
s; 2 I/2 (I -- •)1/2J (9b) \ 
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This, with the usual quantum interpretation, quarantees that after a scat- 
tering event, the color (state) will change with probability 2 as required. 
This quantum model can be analyzed using the Master equation or the 
Liouville equation methods. Instead of dealing with the classical dis- 
tribution functions f and F of the previous section, one has now to employ 
the reduced density matrices. The analysis (see especially Ref. 5) leads to 
the following results. 

I. The quantum Master description is in all respects (one-, two-, 
and many-particle distributions) identical to the classical master 
description of Section 2b. 

II. The one-particle quantum density matrix (Liouville description) 
is different for all times from the classical Liouville description. 
The density matrix does approach equilibrium, but in an 
oscillatory manner, with a single fixed frequency v0 which 
depends on/~ and 2. 

III. For higher correlation functions, there is an oscillatory behavior 
containing several fixed frequencies. There is a limiting state, but 
it is generally not the equilibrium state. This behavior is in total 
contrast to the classical Liouville behavior. 

IV. There are persistent correlations, which do not depend on the 
time. Again, classically there are no such terms in the Liouville 
description of the stochastic model. 

V. There are memory effects. Apart from the one-particle density 
matrix, all higher correlation functions retain a memory of the 
initial configuration. 

Thus, the three levels of description of the stochastic model--classical 
Master, classical Liouville, quantum Liouville--actually lead to qualitative 
differences in the phenomena predicted. 

3. D I S C U S S I O N  A N D  E X T E N S I O N S  

a. It is not particularly difficult to dream up a number of 
generalizations of these models. For example, it would be possible to 
investigate models where the e variables depend on the time explicitly. The 
simplest situation would be one where ep changes from + ! to - 1  in a 
given manner, for example, 

ep( t )= l  

ep(t)= --1 

2nTp < (2n+ 1)Tp 

(2n + 1 )Tp < (2n + 2)Tp 
(10) 
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This corresponds to a location-dependent periodicity of the presence 
(absence) of the scattering centers. Althoug suggested by the Kac model, 
this is quite a different physical system from the original model. The 
natural questions to ask are not the relation between Master and Liouville 
equations, but rather the existence of solutions periodic in time. This type 
of problem is in fact not unrelated to the process of wave transmission 
through a random medium. The solution of the fundamental equation is 
just 

qp(t)=ap l ( t -  1 ) a p _ 2 ( t - 2 ) a p _ , ~ l p _ t ( O )  (11) 

with ap(/) given by (10). This expression can be analyzed; one could com- 
pute 

1 
F(t)  = - ~ ~/(t) (12) 

n p 

and study the existence of the limit t--* oo of F(t); but this type of model 
does not yield any striking new insights in statistical mechanics, although it 
might be useful for modeling nerve transmission phenomena. 

b. It is of some interest (especially in connection with the question of 
whether lattice gauge theories approach thermal equilibrium) to investigate 
this particular modification of the Kac models. The model is (to start out 
with) classical, but the dynamical variables at each point are complex num- 
bers of modulus one 

~ ( t )  = e i~ (13) 

The effect of a scattering is to change the phase of the dynamical 
variable according to 

,p + l(t + 1) = e i(1 ~P)~/2rlp(t ) (14) 

This reduces to the original Kac model of e = ~. 
This system does allow an e averaging; from (14) it follows that 

qp(t )  = e it~/2 e i~p_l~/2 e-i~p_2~/2..,  e iep ,~/2qp_ t(O) (15) 

In the original Kac model, the quantity F defined by (12) gives the dif- 
ference between the number of white balls and black balls, or the net 
polarization of the beam. In this case with qp complex, the interpretation is 
less direct, but one can still ask for limit as t ~ ~ of (rip(t)) ~. In any case 
F-~  0 implies equilibrium. 

A little calculation shows 

(r/p(t))~ = (1 -- # + #e~)'~lp t(0) (16) 
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If all objects start out in the same state, 

( F(t) )~= ( 1 -  # + l~e~) t (17) 

It is not difficult to show that the absolute value of 1 - #  + #e i~ is less than 
1 for all c~. This in conjunction with (17) shows that this system always 
goes to equilibrium. A many-dimensional generalization where the time 
evolution is determined by elements of O(n) rather than O(1) would be 
interesting to consider. (It can be analyzed in detail.) 

c. One of the serious disadvantages of the Kac models is their linear 
character. This means that many important statistical feasures have no 
counterpart in these models. Thus, there is nothing like a coupled hierarchy 
of equations; there are no mixing properties. This makes it difficult to take 
all the qualitative features exhibited by these models terribly seriously. 
Attempts to introduce more realistic features tend to complicate the models 
to such an extent that exact solutions are no longer possible. If, for exam- 
ple, one retains the one-dimensional models, but allows the scattering cen- 
ters to recoil so that the model possesses genuine collisions, no exact 
solutions are known. 

It is possible to construct a example of interacting Kac rings (or 
interacting Kac ladders). An example of such a system would be given by 
two isomorphic Kac ladders, each provided with its own set of scattering 
centers, described, respectively, by the sets {ep} and {~} (Fig. 1). The rules 
are the same as before, except that if a point p in I corresponding to a 
point p~ has a scattering center, the subsequent color in II switches to that 
of I. It is easy to show that the equations of motion are genuinely coupled: 

qp+ ~(t + 1) -- �89 + e~) eprtp(t ) + �89 - ep ~) q~ 
(18) 

. ; + , ( t +  1 '  

B 

W W 

Fig. 1 
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This gives an interaction, but a very trivial one. One shows directly that 
Sp( t ) = tlp(t ) + ti~p( t ) satisfies 

Sp + l(t + 1) = �89 + ~pe~p) (19) 

o r  

2)  - - �9 ( 1  + e , _  , e  I _ ,) Sp_ , ( 0 )  ( 2 0 )  s ( t )  = , ) (1  

(20) shows that if somewhere along the chains the corresponding e's are 
such that 1 1 Ai- ,~qF~q = O, from that point on S remains zero, so that from then 
on tip + tip~ = 0 and remains zero; all that can happen is an exchange of 
colors (or spins). This shows that this interacting system can evolve into a 
periodic behavior. The possibility for this to happen is the probability that 
1 l ~- ~,q~q = 0 for some q. If the marker density in I is p and in II is #1 then 
this probability is given by # + / ~ - 2 # p  1. So the interaction has some 
effect, although it is certainly not dramatic. 

4. KAC M O D E L S  A N D  CELLULAR A U T O M A T A  

Phrased in a somewhat more general and abstract manner, the Kac 
models belong to a class of dynamical systems where both the time and the 
spatial variables are discrete. Underlying the model is a fixed and given 
geometric structure: a lattice. At the lattice points, dynamical variables are 
defined, which can only assume a finite member of specified (usually real) 
numerical values. Finally, a deterministic rule is supplied that really defines 
the dynamics of the system and gives the temporal progression of the 
system. In the Kac model, there is one additional, final operation, which is 
the averaging over the interaction sites or the scattering centers. 

It will be evident that the structure so defined has more than a super- 
ficial similarity to a cellular automaton. These objects, as defined by 
Wolfram, (9) possess the following properties: 

1. They are discrete in time. 

2. They are discrete in space, consisting of a discrete grid of spatial 
cells. 

3. They assume discrete states; each cell has a finite number of 
values. 

4. They are homogeneous; all cells are equivalent and are arranged in 
a regular pattern. 

5. They allow synchronous updating; all cells are updated in syn- 
chrony, each depending on the previous values of neighboring 
cells. 
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6. The follow a deterministic rule; each celt value is updated 
according to a fixed deterministic rule. 

7. They follow a spatially local rule; the rule at each site depends only 
on the values of a local neighborhood of sites around it. 

8. The follow a temporally local rule; the rule for a new value of a site 
depends only on values for a fixed number of preceding steps 
(usually just one). 

A sample formal example of a one-dimensional automaton is 

rli(t+ 1)=f(~li_l(t), lli(t), r/i+ l(tl)) (21) 

where f is a given function. It is evident that the Kac model, before the e 
averaging is carried out, is an example of a very trivial one-dimensional 
cellular automaton; it is not a homogeneous automaton, because of the 
presence of the scattering centers. It can be written in a form similar to 
(21), as 

qi(t + 1) = fi(rli(t)) (22) 

This is in fact simpler than (21), but the dynamical rule in the Kac 
model is location-dependent. The e averaging process is not typically con- 
tained in the Wolfram categorization of cellular automata. Thus, the 
Liouville level of the Kac model is an inhomogeneous one-dimensional 
cellular automaton, to which is adjoined an averaging process. 

By contrast, the Master description of the Kac model is a direct exam- 
ple of a probabilistic cellular automaton. This merely means that 
Wolfram's rule 6 is replaced by a probability statement; in turn, the 
description of the automaton itself is now in terms of distribution 
functions, or probabilities, in precise analogy to the Master description. 

In spite of their simple formal structure, cellular automata can exhibit 
extremely involved, unexpected, and complex behavior, as is already 
noticeable in the Kae models. In fact, cellular automata are probably the 
most effective way to investigate complex behavior. One could--and in this 
respect the study of cellular automata goes much beyond statistical 
mechanics (although both investigate temporal or iterative 
behavior)--study questions of growth and extinction as in life games, or 
the establishment of geometrical patterns. Traditional mathematical 
methods have not done too well in these studies. Digital computers are the 
main tools, and are indispensable for the analysis of these systems. But it is 
perhaps not altogether pointless to try to merge the ideas and methods 
developed for the Kac models with the numerical methods used in cellular 
automata. The Master equation methods, i.e., the probablistic cellular 
automata, while smoothing out many dynamical details, give some 
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generally correct qualitative information--and they can be used in an 
analytic setting. One of the topics that might be studied in this manner is 
the lattice dependence of the evolutionary process. It is known from the 
experiences with cellular automata that there is an intricate and highly 
nontrivial relation between the possible lattice structures, the rules govern- 
ing the temporal evolution, the function f, and the resulting dynamical 
behavior. It appears not too far-fetched that this relationship can be 
investigated using the techniques developed in the Kac models. 

Another more ambitious program would be to investigate the 
phenomena associated with the temporal evolution in a changing geometry. 
In terms of the Kac models, this would involve in first instance a coupling 
of the location of the scattering centers and the dynamical variables of the 
type 

r/i(t + 1) =L(r/t(t), e.i(t)) (23a) 

ei(t + 1) = gi(qi(t), ei(t)) (23b) 

Here i stands for the set of neighbors of location i; i could be in any dimen- 
sion. In (22), the distribution of the scattering centers, which are the 
physically active sites, is dynamically coupled to the dynamical site 
variables. One might conjecture that the Master level description of this 
problem would resemble the behavior of an interacting system (friendly or 
unfriendly random walkers!). 

A still more ambitious program has been recently initiated by 
Ilachinski ~1~ in which the dynamics and the underlying geometry them- 
selves are coupled in a dynamical fashion. The topological structure of the 
lattice is now coupled to the local site value information. The analysis of 
this problem has so far been carried out using a computer, with rather 
unusual structures emerging. The problem suggested by (22) is not that 
ambitious, since the lattice sites i are prescribed. However, the set {~(t)}, 
where e~- -1 ,  i.e., the set where the interactions actually take place, might 
well have a complicated and nontrivial structure. This might profitably be 
attacked using the ideas of this paper. The general moral of this section is 
that the detailed interrelation between Kac-type methodology and cellular 
automata is well worth exploring. Perhaps these analytical methods could 
be a useful adjunct to the obviously essential numerical techniques. 

5. KAC M O D E L S  A N D  M I N I M A L  Q U A N T U M  T H E O R I E S  

It is interesting that the quantum Kac model described so extensively 
in Ref. 5 and mentioned briefly here in Section 2 contains the superposition 
principle of quantum theory and nothing else. For the rest its dynamics, in 
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mathematical structure, is precisely identical with the classical stochastic 
model also discussed in Ref. 5 and Section 2. Of course the quantum treat- 
ment deals with amplitues, while the classical discussion employs 
probability distribution functions. The additivity of the probability 
amplitudes is the single quantum element in the whole discussion. It is in 
this sense that this is a "minimum quantum model." Since the results of this 
quantum model are so striking and so different from the classical system, it 
is a natural place to test the possibility of a classical hidden variable 
model--which would reproduce (at least to some substantial precision) the 
qualitative quantum feature of this model. 

A very obvious way to implement this suggestion would be to leave 
the whole model structure of the classical stochastic model intact, including 
the e variables, but assuming that the q of variables, instead of just two 
values, could assume three values, say c~ ~, ~0, ~+. One could set up the 
classical formalism in this manner, and at some judicious juncture, declare 
just two of the variables to be classically observable and integrate or 
average over the remaining variable. There will be another parameter, 
which in principle could be adjusted as well. In the two-level classical 
model, the objects, upon scattering, change state with probability 2. This 
means that the one-particle distribution can be expressed in terms of a 
classical scattering matrix S~ (which is distinct from the quantum scattering 
matrix). In fact the classical equation (7) can be written in terms of 

(1 - 2  2 ) (24) 
Sd= 2 1 - 2 

In the three-level case, this becomes a 3 x 3 matrix, which upon the 
imposition of some natural symmetries assumes the form 

1 - a - b  a b ) 
Sd= a 1 - 2a b (25) 

a a 1-a ,b  

So the parameters of this classical model are a, b, and # (the impurity den- 
sity). The model to which this leads has been analyzed in detail, with the 
following results. 

I. There are no persistent correlations. 

II. Both the one- and two-particle distribution functions approach 
their equilibrium values of 1/3 and 1/9. 

III. There is no memory of the initial state 
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IV. The LiouviUe and Master equation descriptions are equivalent 
on the one-particle level, but differ for the correlation functions. 
Generally, the solution in approaching these equilibrium values 
shows an exponential behavior (typically a sum of five exponen- 
tials). At values of # larger than a critical density, the decaying 
solutions are modulated by a single field frequency. 

As might be anticipated, there is no averaging process, nor an 
assignment of numerical values to a and b in (25), that will reproduce the 
quantum behavior. Obviously this does not prove that no such model is 
possible, but this classical three-level model does not do it. 

(Although not directly relevant to the present discussion, one can also 
construct a three-level quantum model that shows all the complexities of 
the two-level quantum model. It shows in addition oscillatory behavior 
with a continuous range of frequencies; the frequency range is sensitively 
dependent on the density # of the impurities.) 

It is possible to construct a classical model that simulates more of the 
quantum features. In this model there are again three possible values for 
the t/variables; however, there arc two types of impurities, or two distinct 
types of scattering centers. The mechanical equation remain 

with 

and 

tip + 1(/ + 1) ------ ept/p(t) 

t /p  ~ O~ + = C 2~i/3 red 

t/p = c~ o = 1 white 

t / p  = cX = e 4'~i/3 blue 

(26) 

(27) 

~p = e + = e 2~i/3 impurity of type 1 

= eo = 1 no impurity (28) 

= e 4~i/3 impurity of type 2 

This model has a complicated structure; it depends on the parameters 
a and b defined in (25) and the two types of densities/~ (of 5+) and v of 
(~_). 

Both the stochastic and nonstochastic versions show oscillatious with 
a continuous range of frequencies; in fact, the same range as the quantum 
problem of the one-impurity-type model. However, in the stochastic two- 
impurity model there are no persistent correlations, no memory effects; 
both are present in the quantum model. 
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The new stochastic two-impurity model actually shows some 
similarities to the one-impurity quantum model. There are persistent 
correlations, memory effects, although they are qualitatively different. 

It is not altogether excluded that a very complex scheme could be 
devised that has the same content as the minimal scheme suggested by the 
Kac model, but the evidence points in the opposite direction. The rather 
artificial, even Byzantine features that appear when one introduces more 
states, more objects, or more types of impurities in the hope that 
integration over them, or averaging these new elements, will replace quan- 
tum effects seem to guarantee that these systems will be contrived and com- 
plex. The physical properties of these systems, though they formally might 
be classical, are so artificial that they do little to provide a physical or pic- 
torial intuition so necessary for an effective description of physical system. 

It is remarkable that the Kac models constructed for altogether dif- 
ferent purposes might yet be the most suitable systems to show the formal 
and physical superiority of quantum theory. We would conjecture that no 
classical model exists that can reproduce the physical results of the quan- 
tum Kac model. We guess that on the appropriate level of abstraction (not 
by an exhaustive analysis of special models) the proof would be simple. 
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